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ABSTRACT

Protein families often are characterized by conserved
sequence patterns or motifs. A researcher frequently
wishes to evaluate the significance of a specific
pattern within a protein, or to exploit knowledge of
known motifs to aid the recognition of greatly diverged
but homologous family members. To assist in these
efforts, the pattern-hit initiated BLAST (PHI-BLAST)
program described here takes as input both a protein
sequence and a pattern of interest that it contains.
PHI-BLAST searches a protein database for other
instances of the input pattern, and uses those found as
seeds for the construction of local alignments to the
query sequence. The random distribution of PHI-
BLAST alignment scores is studied analytically and
empirically. In many instances, the program is able to
detect statistically significant similarity between
homologous proteins that are not recognizably related
using traditional single-pass database search
methods. PHI-BLAST is applied to the analysis of
CED4-like cell death regulators, HS90-type ATPase
domains, archaeal tRNA nucleotidyltransferases and
archaeal homologs of DnaG-type DNA primases.

INTRODUCTION

In the analysis of a protein or DNA sequence, particular interest
often focuses upon a small region, domain or sequence pattern.
A natural question is whether there are other related sequences
that share the same pattern. The most widely used tools for
sequence similarity search allow matching between arbitrary
regions of the query and database sequences (1–5). In contrast,
many motif-based search methods seek database sequences that
match a pre-specified pattern (6–12). If this pattern is too weak,
or not specified with sufficient precision, the number of matches
may be very large, most being of no biological relevance. On the
other hand, an overly-specific pattern may exclude many
sequences of interest.

We describe here the pattern-hit initiated BLAST (PHI-
BLAST) program, whose hybrid strategy addresses a type of
question frequently asked by researchers: namely, is a particular
pattern seen in a protein of interest likely to be functionally
relevant, or does it occur simply by chance? To address this
question, we combine a pattern search with a search for
statistically significant sequence similarity. These two ap-
proaches were combined previously in a program that explored
the output of a BLAST search for conserved patterns (10).
PHI-BLAST implements a reverse strategy which is computa-
tionally more efficient, and which we believe will be of greater
utility. Specifically, the similarity search is restricted to a subset
of the sequence database comprised of the sequences that contain
the given pattern.

The input to PHI-BLAST consists of a protein or DNA
sequence, along with a specific pattern occurring at least once
within the sequence. The pattern is currently required to be a
sequence of residues or sets of residues, with ‘wild cards’ and
variable spacing allowed; all PROSITE patterns (12), for
example, have this form. For each match between an instance of
the pattern in the query sequence and an instance in a database
sequence, PHI-BLAST constructs a high-scoring local alignment
that includes the match. All resulting alignments are sorted by
score and evaluated statistically.

This approach has greatest utility when it is suspected that a few
residues comprising a small motif may be crucial for the
biological function of interest. Showing that this pattern occurs
within an extended and statistically significant alignment of the
query sequence with one or more database sequences greatly
reduces the likelihood that the pattern is spurious. Conversely,
insisting on the presence of the pattern and hence searching a
reduced sequence space may aid the detection of subtle simila-
rities that blend into the background noise in a regular BLAST
search.

THE PHI-BLAST ALGORITHM

To search for matches to a given pattern, we adapted a method of
Baeza-Yates and Gonnet (13) and Wu and Manber (14). This
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method permits simple patterns to be represented in a single
computer word and matches to be found very efficiently. When
the pattern is relatively complex, for example consisting of many
rigid parts and/or having wide ranges of spacer lengths, our
program first searches for the rigid part that is least likely to match
by chance alone, and then performs local searches for the
remaining pattern elements.

For each instance of the input pattern in a database sequence,
paired with an instance in the query, PHI-BLAST attempts to find
the optimal local alignment (1,15) containing the aligned
patterns. This can be done rigorously by applying dynamic
programming (16,17) to the parts of the two sequences preceding
and the parts following the pattern. The alignment returned is
required to begin at the corner of the path graph, but is permitted
to end anywhere within the graph. The difficulty with this
approach is that, to guarantee optimality, a very large portion of
the path graph needs to be searched, and this requires inordinate
time in a database search (18). Accordingly, we have used the
gapped extension heuristic described in Altschul et al. (5) and
Zhang et al. (18). Basically, path graph cells are considered only
if the score of the best alignment leading into them falls no more
than X below the best score yet found. For sufficiently large
values of the X parameter, this approach almost always returns the
optimal local alignment.

Because PHI-BLAST performs a gapped extension whenever
an instance of the input pattern is encountered in the database,
reasonable execution times depend upon such instances being
relatively rare. Therefore, we allow only patterns that are
expected to occur less frequently than once per 5000 database
residues. Any pattern that contains four completely specified
residues, or three specified residues whose average background
frequency is ≤5.8%, passes this test. Of course, the more specific
the input pattern, the faster PHI-BLAST will run. The frequency
with which a pattern will occur within the database can be
estimated easily (19) from background amino acid frequencies
(20).

STATISTICAL ANALYSIS

An alignment A produced by PHI-BLAST may be divided into
three parts: the region A0 spanned by the input pattern, and the
local alignments A1 and A2 produced to either side of A0 by the
gapped extension routine. Either or both of A1 and A2 may be
empty. Correspondingly, the score S of the alignment may be
divided into the scores S0, S1 and S2. For the purpose of statistical
analysis, it is easiest to assume that all alignment regions A0 that
satisfy the input pattern are of equal biological plausibility, and
therefore to ignore their scores. Accordingly, each alignment
produced by PHI-BLAST is ranked by its reduced score S′ = S1
+ S2. For a given value x, we wish to estimate how many
alignments are expected to have a reduced score S′ ≥ x purely by
chance.

In general, the input pattern is chosen because it is known to
correspond to some feature of biological interest. Therefore, we
make no statistical inference from the number of times the pattern
is observed to occur within the query sequence (nq) and the
database as a whole (nd). We simply record N = nq nd, the number
of distinct pattern pairs that may seed a PHI-BLAST local
alignment.

The simplest model of protein sequences is as random strings
of amino acids, chosen independently with specific background

probabilities for the various possible residues. To estimate the
random distribution of S′, we start by considering the distribution
of the scores S1 and S2 of which it is the sum. Each of these scores
can be thought of as the result of the gapped extension routine
applied to a pair of random sequences. In the limit of large values
for the X-dropoff parameter (5,18), S1 is the score of the optimal
local alignment required to start at a particular point P. The much
studied Smith–Waterman alignment score (1) is just this con-
strained local alignment score, maximized over all path graph
points P. The distribution of Smith–Waterman scores has been
established empirically to follow an extreme value distribution,
whose scale or decay parameter λ does not change with
increasing search space sizes (4,21–24). This implies (25) that the
distribution of S1 should have an exponential tail, with decay
parameter λ equal to that of the extreme value distribution for
Smith–Waterman scores. Some simple calculus then yields that
for sufficiently large scores x, the distribution of S′ = S1 + S2 has
the form Prob(S′ ≥ x) ≈ C(λx + 1)e–λx for some constant C. The
scores of optimal local alignments constrained to contain distinct
pattern pairs may be correlated, but the expected number of
alignments attaining a given score is independent of such
correlation. Therefore, the expected number of chance align-
ments produced by PHI-BLAST with reduced score at least x is

E(S′ ≥ x) ≈ CN(λx + 1)e–λx 1

Tables of λ for a variety of amino acid substitution matrices and
gap costs have been reported (4), and their validity tested on a
large number of protein families (26). The values for λ employed
here differ slightly from those published previously (4), because
we have re-estimated λ using larger and therefore more accurate
simulations. The parameter C of equation 1 is new and requires
its own estimation. Random simulation (data not shown) using
the background amino acid frequencies of Robinson and
Robinson (20) yields C ≈ 0.6 for the BLOSUM-62 matrix (27) in
conjunction with the complete range of affine gap costs useful for
standard protein sequence comparison (4). We will consider the
validity of equation 1 after discussing several biological
examples.

IMPLEMENTATION AND EXAMPLES

To enhance the utility and functionality of a WWW-based version
of PHI-BLAST, we have nested it between two other programs.
While one may define a pattern based upon specific knowledge
concerning the query sequence, a researcher often wishes to
search a pattern-database for any well-characterized motifs the
query may contain. To streamline this latter approach, we have
implemented a program that first searches the PROSITE database
(12) with the query; any patterns found may then be used to
launch a PHI-BLAST database search. To facilitate more detailed
analysis of PHI-BLAST output, we allow it automatically to
serve as the basis for constructing a position-specific score matrix
for further database searching via the position-specific iterated
BLAST (PSI-BLAST) program (5). Like other BLAST family
programs, PHI-BLAST incorporates a pre-filter for protein
regions of biased amino acid composition (low complexity) that
often corrupt database searches (28,29).

PHI-BLAST may detect subtle relationships that escape
standard database similarity searches, but this potential depends
upon the specification of an amino acid pattern likely to be
conserved within the protein family of interest. We discuss four
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examples involving protein families whose original description
depended critically upon detecting relatively weak sequence
similarities. In each case, PHI-BLAST reports a subtle but
structurally and functionally relevant relationship. The align-
ments suggesting these relationships are not all statistically
significant but, in each database search output ranked by E-value,
they appear immediately after the alignments involving clear
family members, thereby prompting further analysis. In contrast,
any of these similarities reported by gapped BLAST (5) are
preceded by a number of alignments with smaller E-values
involving unrelated sequences. The four examples discussed
below are summarized in Table 1. All searches were performed
on the non-redundant (NR) protein sequence database maintained
by the NCBI (30).

CED4-like cell death regulators

The Caenorhabditis elegans protein CED4 is a regulator of
programmed cell death (apoptosis). CED4 contains the classical
P-loop motif involved in phosphate binding and found in a great
variety of ATPases and GTPases. ATP binding by CED4, and the
role of ATP in its function, have been demonstrated (31,32). In a
gapped BLAST search of the NR database, CED4 shows
statistically significant sequence similarity to only one protein,
the human apoptosis regulator Apaf-1, in which the P-loop is
conserved (33,34). However when PHI-BLAST is used, requir-
ing conservation of the P-loop (Table 1), the best hit after Apaf-1,
with E-value 0.038, is to a plant disease resistance protein,
Arabidopsis thaliana T7N9.18 (35). Further sequence compari-
son shows that animal apoptosis regulators and putative plant
ATPases involved in disease resistance share several conserved
motifs, suggesting that they have a common origin and may have
similar roles in programmed cell death (L.Aravind, V.M.Dixit
and E.V.Koonin, unpublished observations). Before the Apaf-1

sequence became available, this conclusion had been reached
through a laborious comparison of CED4 to a large number of
different ATPases (32). Because the Apaf-1 sequence is highly
similar to homologous plant proteins, the connection between
CED4 and the plant proteins can be easily demonstrated by
iterative database search (5). Even without Apaf-1, however,
PHI-BLAST is able immediately to establish this link.

HS90-type ATPase domains

We used PHI-BLAST to investigate the subtle but structurally
validated relationship between the ATPase domains in the MutL
DNA repair proteins, type II topoisomerases, histidine kinases
and HS90 family proteins (36,37). The output identified a new
family of eukaryotic proteins that contain the same type of
predicted ATPase domain, but that in standard database searches
do not show significant similarity to any known member of the
superfamily. A PHI-BLAST search with the Escherichia coli
MutL protein (38) as query showed moderate similarity (E-value
0.017) to the C.elegans protein ZC155.3 (39) that was originally
described as having ‘weak similarity to Bovine synaptocanalin I’.
Subsequent database searches with this worm protein sequence as
query revealed homologs in humans (KIAA0136) (40) and plants
(41,42), whereas a PHI-BLAST search also showed convincing
similarity to MutL family members (best E-value 6 × 10–5).
Elucidation of the function of this new family of eukaryotic
ATP-utilizing enzymes will be of considerable interest; the
synaptocanalin domain apparently was fused to the worm protein
by exon misassembly.

Archaeal tRNA nucleotidyltransferases

The archaeal tRNA nucleotidyltransferases (Cca) are a distinct
family of nucleic acid polymerases (43) that in standard database

Table 1. Detection of subtle protein sequence relationships using PHI-BLAST

The reported results are from searches of the NCBI (30) non-redundant protein sequence database (April 9, 1998; 298 842
sequences; 90 087 406 residues). The PHI-BLAST and BLAST algorithms used the BLOSUM-62 substitution matrix
(27), in conjunction with penalties of 11+ k for gaps of length k. BLAST E-values were calculated using the statistical
parameters λ = 0.270 and K = 0.047, and applying an edge-effect correction (4). PHI-BLAST E-values were calculated
from equation 1, using the statistical parameters λ = 0.270 and C = 0.6.
aPatterns are described using the one-letter amino acid code. Brackets represent a choice among any of the enclosed
amino acids. ‘x’ represents any amino acid. ‘h’ represents [ILVMF], a hydrophobic amino acid.
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searches do not have detectable similarity to any proteins other
than orthologs from other archaeal species. However, they do
contain a conserved motif, with two aspartate residues, that
resembles the catalytic sites of many other polymerases (44).
When this pattern (Table 1) is specified in a PHI-BLAST search
with Methanococcus jannaschii Cca (45) as query, the top hit
outside the archaeal Cca family itself, with E-value 0.061, is to
hypothetical protein AF0299 from Archaeoglobus fulgidus (46),
which belongs to a previously described archaeal family of
predicted nucleotidyltransferases (47); the third hit (E-value
0.13) is to an experimentally characterized streptomycin
3′′ -adenylyltransferase from Enterococcus faecalis (48).

Table 2. Accuracy of PHI-BLAST statistics

PHI-BLAST searches were performed on shuffled and reversed versions
of the NR database, using the query sequences and associated patterns of
Table 1, as well as the same alignment scoring system and statistical para-
meters λ and C. A, CED4-like cell death regulators; B, HS90-type ATPase
domains; C, archaeal tRNA nucleotidyltransferases; D, archaeal homo-
logs of DnaG-type DNA primases.

Archaeal homologs of DnaG-type DNA primases

Archaeal homologs of bacterial DNA primases, e.g. M.jannaschii
protein MJ1206 (45), contain a motif typical of helicases (47), but
do not show significant similarity to these proteins in standard
BLAST searches. Using M.jannaschii MJ1206 and the helicase
motif as query, the first non-trivial PHI-BLAST hit, with E-value
0.54, is to the well known helicase Neisseria gonorrhoeae UvrB
(49). The relevance of the helicase motif in the archaeal primase
homologs is supported by an extended alignment with the UvrB
helicase (L.Aravind, D.D.Leipe and E.V.Koonin, unpublished

observations). The similarities uncovered in this example are
undetectable with standard database search techniques.

PERFORMANCE EVALUATION

To test the accuracy of the PHI-BLAST statistics given by
equation 1, we used each of the examples above to search
‘random databases’ constructed from NR by shuffling or
reversing each sequence. For each query, the lowest recorded
E-value, and the number of alignments found with E-value ≤ 10,
are given in Table 2. For the shuffled database, the geometric
mean of the observed numbers of sequences with E-value ≤ 10 is
10.0, and no single case diverges from this value by more than a
factor of 2.5. This might be expected, as the values of λ and C used
in equation 1 were calculated employing a random protein model
in which all amino acids occur independently. Perhaps surprisingly,
Table 2 suggests that under an alternative random protein model,
based upon reversed real sequences, these statistics are slightly
conservative.

To compare the speed of PHI-BLAST to that of a standard
gapped BLAST program (5) we timed both for searches of each
of the four examples above against the NR database. Analysis of
the results (Table 3) suggests that on the computer system used,
∼8 s of each PHI-BLAST run were required to scan the database
for pattern hits and for system overhead; the remainder was spent
on constructing gapped extensions for all pattern hits found.
Clearly, the number of hits generated by the input pattern is a key
determinant of PHI-BLAST’s speed. For relatively informative
patterns PHI-BLAST is very fast, requiring not much more time
than that needed to search for pattern hits. For relatively weak
patterns, PHI-BLAST expends most of its effort extending hits,
and can require time comparable to that for gapped BLAST.

CONCLUSION

As illustrated by the biological examples discussed above,
PHI-BLAST helps both to ascertain the biological relevance of
patterns detected within protein sequences, and in some cases to
detect subtle similarities that escape a regular BLAST search. We
note, however, that PHI-BLAST was specifically designed to
combine pattern search with the search for statistically significant
sequence similarity, rather than to maximize search sensitivity.
Thus in general one should not expect PHI-BLAST, which by its

Table 3. Execution speed of PHI-BLAST

The four examples of Table 1 were used to search the NR database using PHI-BLAST, and BLASTP
version 2.0.4. Both programs employed the same substitution and gap costs, and the same X-dropoff
parameter. This timing experiment was run on one 168 MHz UltraSparc processor of a Sun Ultra
Enterprise 4000/5000 server with 768 Mbytes of RAM. This machine runs the operating system So-
laris, version 2.6, which is an implementation of UNIX. We used the current Sun C compiler, with
the -O option for optimization, to compile both programs. The times given are the sum of the user
and system times reported by the time command, and are for the better of two identical runs. A–D,
as in Table 2.
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nature is a single-pass search method, to be more sensitive than
PSI-BLAST (5). Furthermore, within proteins, residues that are
absolutely conserved during evolution constitute a small minority,
and even specifying a restricted set of possibilities for a given
residue position often excludes many members of a protein
family. PHI-BLAST therefore is not the ideal tool for completely
delineating a class of related proteins. However, by greatly
restricting the size of the search space, PHI-BLAST can allow the
similarities of some distant homologs to rise above the back-
ground noise that would otherwise obscure them. Such findings
can be used subsequently for more extensive family analysis
using PSI-BLAST (5) or other tools.

We have developed PHI-BLAST for protein–protein compari-
son, but plan to extend its applicability. A version that translates
a DNA database in all six reading frames for comparison to a
protein query would be particularly valuable, and a DNA–DNA
comparison version should also find use. We also plan to extend
PHI-BLAST so that it may use generalized affine gap costs (50)
in place of the traditional affine gap costs (51–54) currently
permitted.

Note

Source code for PHI-BLAST is available by anonymous ftp from
the machine ncbi.nlm.nih.gov, within the directory ‘blast’, and
the program may be run from NCBI’s web site at
http://www.ncbi.nlm.nih.gov/
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